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Abstract. In recent years, there has been a true revival of the nonsymmetric Lanczos method. On

the one hand, the possible breakdowns in the classical algorithm are now better understood, and so-

called look-ahead variants of the Lanczos process have been developed, which remedy this problem.

On the other hand, various new Lanczos-based iterative schemes for solving nonsymmetric linear

systems have been proposed. This paper gives a survey of some of these recent developments.

1 Introduction

Many numerical computations involve the solution of large nonsingular systems of linear equations

Az = b. (1.1)

For example, such systems arise from finite difference or finite element approximations to partial

differential equations (PDEs), as intermediate steps in computing the solution of nonlinear prob-

lems, or as subproblems in large-scale l]near and nonlinear programming. Typically, the coefficient
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matrix A of (1.1) is sparse and highly structured. A natural way to exploit the sparsity of A in the

solution process is to use iterative techniques, which involve A only in the form of matrLx-vector

products. Most iterative schemes of this type fall into the category of Krylov subspace methods:

they produce approximations x,_ to A-lb of the form

z,_ E x 0 ÷ K,,(r0, A), n = 1, 2, .... (1.2)

Here x 0 is any initial guess for A-lb, r 0 := b - Az o is the corresponding residual vector, and

K,_(r0, A ) := span{r0, Ar0,...,An-lr0} (1.3)

is the nth Krylov subspace generated by r 0 and A.

The most powerful iterative method of this type is the conjugate gradient algorithm (CG) due

to Hestenes and Stiefel [33], which is a scheme for linear systems (1.1) with Hermitian positive

definite A. Although CG was introduced as early as 1952, its true potential was not appreciated

until the 1970s. In 1971, Reid [45] revived interest in the method when he demonstrated its

usefulness for solving linear systems arising from self-adjoint elliptic PDEs. Moreover, it was realized

(see, e.g., [7]) that the performance of CG can be enhanced by combining it with preconditioning,

and efficient preconditioners, such as the incomplete Cholesky factorization [40], were developed.

Thereafter, the success of CG triggered an extensive search for CG-type Krylov subspace meth-

ods for non-Hermitian linear systems, and a number of such algorithms have been proposed; we

refer the reader to [1, 51, 48, 47, 17] and the references given there. Among the many properties

of CG, the following two are the most important ones: its nth iterate is defined by a minimization

property over Kn(ro, A), and the algorithm is based on three-term vector recurrences. Ideally, a
CG-like method for non-Hermitian matrices would have features similar to these two. It would

produce iterates z,, in (1.2) that:

(i) are characterized by a minimization property over K,_(r0, A), such as the minimal residual

property

lib- Az,_[[ = min lib- Az[[, z,_ e Zo + g_(ro, A);
zEzo+Kn(ro,A)

(ii) can be computed with little work per iteration and low overall storage requirements.

Unfortunately, it turns out that, for general non-Hermitian matrices, one cannot fulfill (i) and (ii)

simultaneously. This result is due to Faber and Manteuffel [10, 11] who have shown that, except

for a few anomalies, CG-type algorithms with (i) and (ii) exist only for matrices of the special form

A = e_e(T + aI), where T=T H, 8 E R, a E C, (1.4)

(see also Voevodin [55] and Joubert and Young [35]). Note that the class (1.4) consists of just the
shifted and rotated Hermitian matrices. We remark that the important subclass of real nonsym-

metric matrices

A=I-S, where 3'=-S T is real, (1.5)

is contained in (1.4), with e_° = i, a = -i, and T = iS. Concus and Golub [6] and Widlund [56]

were the first to devise a CG-type algorithm for the family (1.5).

Most of the non-Hermitian Krylov subspace methods that have been proposed satisfy either

(i) or (ii). Until recently, the emphasis was on requirement (i), and numerous algorithms with
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iteratescharacterizedby (i)or a similarconditionhave been developed,startingwith Vinsome's

Orthomin [54].The most widely used method in thisclassis the generalizedminimal residual

algorithm (GMRES) due to Saad and Schultz[49].Of course,none of thesemethods fulfills(ii),

and indeed,forallthesealgorithmswork per iterationand overallstoragerequirementsgrow linearly

with the iterationnumber n. Consequently,in practiceone cannot affordto run the fullversion

of these algorithms,and itisnecessaryto use restarts.For diffficultproblems,thisoftenresultsin

very slow convergence.

The second category of CG-like non-Hermitian Krylov subspace methods consistsof schemes

that satisfy (ii), but not (i). The archetype in this class is the classical biconjugate gradient algorithm

(BCG), which was proposed by Lanczos [38] already in 1952 and later revived by Fletcher [12] in

1976. Since no minimization condition of type (i) holds for BCG, the algorithm can exhibit--and

typically does--a rather irregular convergence behavior with wild oscillations in the residual norm.

Even worse, breakdowns in the form of division by 0 may be encountered during the iteration

process. In finite precision arithmetic, such exact breakdowns are very unlikely; however, near-

breakdowns may occur, leading to numerical instabilities in subsequent iterations.

The BCG method is intimately connected with the nonsymmetric Lanczos process [37] for

tridiagonalizing square matrices. In particular, the Lanczos algorithm in its original form is also

susceptible to breakdowns and potential numerical instabilities. In recent years, there has been

a true revival of the nonsymmetric Lanczos process. On the one hand, the possible breakdowns

in the classical algorithm are now better understood, and so-called look-ahead variants of the

Lanczos process have been developed, which remedy this problem. On the other hand, various new

Lanczos-based Krylov subspace methods for solving general non-Hermitian linear systems have

been proposed. Here we review some of these recent developments.

The remainder of the paper is organized as follows. In Section 2, we focus on the nonsymmetric

Lanczos process; in particular, we sketch a look-ahead variant of the method and briefly discuss

related work. We then turn to Lanczos-based Krylov subspace algorithms for non-Hermitian linear

systems. First, in Section 3, we consider the recently proposed quasi-minimal residual method

(QMI{.) and outline two implementations. In addition to matrix-vector products with the coefficient

matrix A of (1.1), BCG and QMR also require multiplications with its transpose A T. This is a

disadvantage for certain applications where A T is not readily available. It is possible to devise

Lanczos-based methods that do not involve A T, and in Section 4, we survey some of these so-called

transpose-free schemes. In Section 5, we make some concluding remarks.

Throughout the paper, all vectors and matrices are allowed to have real or complex entries.

As usual, M T and M H denote the transpose and conjugate transpose of a matrix M, respectively.

The vector norm ]lzl] = _ is always the Euclidean norm. The notation

= {¢(A) - a0 + alA +... + Ia0,...,a, e C}

is used for the set of all complex polynomials of degree at most n. Finally, A is always assumed to

be a square matrix of order N.

2 The Nonsymmetric Lanczos Process

In this section, we consider the nonsymmetric Lanczos process. Here the matrix A is not required

to be nonsingular.
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2.1 A Look-Ahead Lanczos Algorithm

The La_czos method in its original form as proposed by Lanczos [37] can break down prematurely.

Taylor [52] and Parlett, Taylor, and Liu [44]--with their look-ahead Lanczos algorithm--were the
first to devise a variant of the classical process that skips over possible breakdowns. We use the term

look-ahead Lanczos method in a broader sense to denote any extension of the standard algorithm

that circumvents breakdowns. In this section, we sketch an implementation of a look-ahead Lanczos

algorithm that was recently developed by Freund, Gutknecht, and Nachtigal [18].
Given two nonzero starting vectors v1 E CN and w 1 E CN, the look-ahead Lanczos process

generates two sequences of vectors {vj}jn__x and {wj)jn__x such that, for n = 1, 2,...,

span {v,, v2,..., v,} = K, (vl, A), (2.1)

span{w 1, w2,. •., wn} = Kn(w x, AT).

Here, K,_(vI,A ) and K,_(wl, A T) denote the nth Krylov subspace of C N generated by v1 and A,

and w 1 and A T, respectively (of. (1.3)). Moreover, the Lanczos vectors are constructed so that the

block biorthogonality relation

(W(j))rV(k) = (D (k) ifj = k, j,k = 1,.. l, (2.2)0 ifj#k, "'

holds. Here, the matrices V (k) and W (k) contain the Lanczos vectors built during the kth look-ahead

step. More precisely,

V(k) = [v._ v._+l "'" v._.,_l],

W(k)=[w._ w._+l "'" w.,.,_l],
k = 1,...,l- 1,

and

where

V( t)=[v., v.,+l "'" v.],

W(O=[w., w.,+a "'" w.],

1 = n 1 < n 2 < ... < n k < "" < nt < n < hi+ 1.

The first vectors vn_ and w_k in each block are called regular, and any remaining vectors are called
inner. Note that l = l(n) denotes the index of the last constructed regular vector. Furthermore, in

(2.2), the blocks D (k) are nonsingular for k = 1,...,l- 1, and D (t) is nonsingular if n = nt+ 1 - 1.

With these preliminaries, the look-ahead Lanczos algorithm can be sketched as follows.

Algorithm 2.1 (Sketch of the look-ahead Lanczos process)

O) Choose nonzero vectors Vl, w 1 E CN.

Set VO) = vx, W (x) = Wl, DO) = (W(1))Tv (1).

Seth 1 =l,l=l, vo=wo=O, Vo=Wo=O.

For n = 1,2,..., do :

1) Decide whether to construct vn+ 1 and wn+ 1 as regular or inner vectors

and go to 2) or 3), respectively.
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2) (Regular step.) Compute

It,, = (D(O)-x(W(O)T Avn,

Vn = (D(I-1))-I(W(I-1))TAvn,

Vn+_ = Avn - V(t)lZn - V(t-1)Vn,

Wn+ 1 = ATwn - W(l)l_n - W(t-1)vn.

Set nt+ 1 = n + l, l = l + l, V (t) = W (t) = O, and go to 4).

3) (Inner step.) Compute

u,, = (D(t-1))-I(W(t-x))T Av,,,

Vn+l = Avn - _,_Vn -- rl,aVn--1 -- V(t-1)Vn,

Wn+l = Arwn - f,,Wn - rlnWn__ - W(t-1)Vn •

4) If v,,+l = 0 or w,,+l = O, stop. Otherwise, set

V(') = [V(') Vn+, ], W(')= [W(" w,.,+x ],

D(O = (W(O)TV(O.

(2.3)

(2.4)

In [18], it is shown how one can implement Algorithm 2.1 so that only two inner products are

computed at every step, for either ttn and vn in (2.3), or for Vn in (2.4). The crucial part of

Algorithm 2.1 is the look-ahead strategy used in step 1). As described in [18], the decision in 1) is

based on three checks. For a regular step, it is necessary that D(l) be nonsingular. Therefore, one

of the checks monitors the size of smallest singular value of D (0. The other two checks attempt

to ensure the linear independence of the Lanczos vectors. The algorithm monitors the size of the

components ttn and v,_ along the two previous blocks V (t} and V (t-_}, respectively W(0 and W (t-l},

in (2.3), and performs rt regular step only if these terms do not dominate the components Av,_ and

ATw,_ in the new Krylov spaces. Complete details of the implementation of the look-ahead Lanczos

Algorithm 2.1 are given in [18].

We note that, in (2.4), _n and 0r are axbitrary inner recurrence coefficients, with _n, = 0. One
possibility is to choose the Chebyshev iteration [25, 39] parameters for Q and r/,v However, since

the length of look-ahead steps is usually small, the choice of the inner recurrence coefficients is not

crucial; in our experience, Cn = 1 and, if n _ n_, On = 1, works satisfactorily. Indeed, with the look-

ahead strategy proposed in [18], the algorithm performs mostly regular steps, and typically, only

a few look-ahead steps of length bigger than 1 occur. In our experiments, the longest look-ahead

step we encountered was of length 4.

For later use, we remark that the recurrences in (2.3) and (2.4) can be written compactly in

matrix form. For example, for the right Lanczos vectors vn, we have

AVn= vn+ Hn, (2.5)

where
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and
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is a block tridiagonal matrix. The diagonal blocks a k are square unreduced upper Hessenberg

matrices, whose size is equal to the number of vectors in the corresponding block V (k). The

matrices "rk have only one nonzero element, in their upper right corner, and thus H,_ is an upper

Hessenberg matrix, with full rank

rank H,_ = n. (2.6)

If only regular steps 2) axe performed, then the Algorithm 2.1 reduces to the classical Lanc-
zos process. In this case, the blocks V (k) and W (k) consist of just the single vector % and wk,

respectively, and the orthogonality relations (2.2) now read:

{ _k_O .,n. (2.7)
ifj=k,

wTvk= 0 ifj_k, j,k=l,..

Moreover, Hn is just a scalar tridiagonal matrix. The condition _k _ 0 in (2.7) is crucial, since

each step of the classical Lanczos algorithm involves a division by 5k- The point is that one cannot

guarantee 5k _ 0, and in fact, when 5k = 0 with vk y_ 0 and w_ y_ 0, the algorithm breaks down.

Note that 5k _ 0 signals a near-breakdown of the procedure.

Algorithm 2.1 will handle exact and near-breakdowns in the classical Lanczos process, except

for the special event of an incurable breakdown [52]. These are situations when the look-ahead

procedure would b,_ild an infinite block, without ever finding a nonsingular D (l). Taylor [52] has

shown in his Mismatch Theorem that in case of an incurable breakdown, one can still recover

eigenvalue information. For linear systems, an incurable breakdown would require restarting the

procedure with a different choice of starting vectors. Fortunately, in practice round-off errors will

make an incurable breakdown highly unlikely.

Finally, we remark that, for the important class of p-cyclic matrices A, exact breakdowns in

the Lanczos process occur in a regular pattern. In this case, as was shown by Freund, Golub,

and Hochbruck [16], look-ahead steps are absolutely necessary if one wants to exploit the p-cyclic

structure. For details of a look-ahead Lanczos algorithm for p-cyclic matrices, we refer the reader

to [16l.

2.2 Historical Remarks and Related Work

The problem of breakdowns in the classical Lanczos algorithm has been known from the beginning.

Although a rare event in practice, the possibility of breakdowns has certainly brought the method

into discredit and has prevented many people from actually using the algorithm. On the other

hand, as was demonstrated by Cullum and Willoughby [8], the Lanczos process--even without

look-ahead--is a powerful tool for sparse matrix computation.

The Lanczos method has intimate connections with many other areas of Mathematics, such as

formally orthogonal polynomials (FOPs), Padd approximation, Hankel matrices, control theory, and
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coding theory. The problem of breakdowns has a correspondingformulationin allof these areas,

and remedies for breakdowns in these differentsettingshave been known for quite some time.

For example, the breakdown in the Lanczos processisequivalentto a breakdown of the generic

three-termrecurrencerelationfor FOPs, and itiswellknown how to overcome such breakdowns

by modifying the recursionsfor FOPs (see [26,9, 31] and the referencesgiven there). In the

context of the partialrealizationproblem in controltheory,remedies for breakdowns were given

in [36, 27]. The Lanczos process is also closely related to fast algorithms for the factorization of

Ha_kel matrices, and again it was known how to overcome possible breakdowns of these algorithms

(see [32, 22] and the references therein). However, in all these cases, only the problem of exact
breakdowns was addressed.

The look-ahead Lanczos algorithm of Taylor [52] and Parlett, Taylor, and Liu [44] was the first

procedure that remedies both exact and near-breakdowns. We point out that their implementation

is different from Algorithm 2.1. In particular, it always requires more work per step than Algo-

rithm 2.1, and it does not reduce to the classical Lanczos process in the absence of look-ahead

steps. Furthermore, in [52, 44], details axe given only for the case of look-ahead steps of size 2, and

their algorithm does not generalize easily to blocks of more than two vectors.

In recent years, there has been a revival of the nonsymmetric Lanczos algorithm, and since 1990,

in addition to the papers we have already cited in this section, there are several others dealing with

various aspects of the Lanczos process. We refer the reader to [2, 3, 4, 22, 29, 34, 43] and the

references given therein.

3 The Quasi-Minimal Residual Approach

We now return to linear systems (1.1). From now on, it is always assumed that the matrix A is

nonsingular. In this section, we describe the QMR method. The procedure was first proposed by

Freund [13, 15] for the case of complex symmetric matrices A = A T, and then extended by Freund

and Nachtigai [19] for the case of general non-Hermitian matrices.

3.1 The Standard QMR Algorithm

Recall that the nth iterate of any Krylov subspace method is of the form (1.2). If now we choose

v 1 = r0 (3.1)

in Algorithm 2.I, then, by (2.1), the Lanczos vectors vl,..., v,, span/C,t(r0, A); hence we can write

xrL -- x 0 + V,tzrL,

for some z, E C'*. Together with (3.1) and (2.5), this gives the corresponding residual vector

r,_ = r0 - AV,_z n = Vr,+l(e _ - H,tz,t), (3.2)

where e 1 denotes the first unit vector in R '_+1. As V,t+l is not unitary, it is not possible to minimize
the Euclidean norm of the residual without expending O(Nn 2) work and O(Nn) storage. Instead,

one minimizes just some weighted Euclidean norm of the coefficient vector in (3.2). More precisely,
let

fl,_=diag(wl,w2,...,_+l), wj>O, j=l,...,n+l, (3.3)
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be a weighting matrix. Then z, 6 C" is chosen as the solution of the least squares problem

II lel - n.n.z ll = mJnII ,e, - n.n.zll. (3.4)
zeC"

Note that,in view of (2.6)and (3.3),the problem (3.4)always has a unique solution.Usually,the

weightsin (3.4)are chosen as wj ---][511,which means that allcomponents in

axe treated equally.

The least-squares problem (3.4) can be solved by standard techniques based on a QR decompo-

sition of f_,H n. One computes a unitary matrix Qr, 6 C ('_+1)x("+1) and an upper triangular matrix

R, 6 C '_x" such that

and then obtains z, from

(3.5)

z n =R_ltn, t n=w 1[I n O]Qael, (3.6)

= z o + V,R_lt,. (3.7)

which gives

2rL

This gives the following QMR. algorithm.

Algorithm 3.1 (QMR algorithm)

O) Choose 2 o6C N and set v 1 = r o = b- A2 o.

Choose w 1 E C N with w 1 # O.

For n = 1,2,..., do :

1) Perform the nth iteration of the look-ahead Lanczos Algorithm 2.1.

This yields matrices V,, V,+I, and H_ which satisfy (2.5).

2) Update the QR factorization (3.5) of H, and the vector t, in (3.6).

3) Compute x, from (3.7). /fx, has converged, stop.

We note that Qn in (3.5) is just a product of n Givens rotations, and thus the vector t,_ is easily

updated in step 2). Also, as H, is block tridiagonal, R_ also has a block structure that is used in

step 3) to update z, using only short recurrences. For complete details, see [19].

The quasi-minimization (3.4) is strong enough to obtain convergence results for QMR. One can

derive error bounds for QMR that are comparable to those for GMRES. Also, it is possible to relate

the norms of the QMR and GMRES residual vectors. This is in contrast to BCG and methods

derived from BCG, for which no such convergence results are known. Finally, if desired, one can

recover BCG iterates from the QMR Algorithm 3.1, at the expense of only one additional SAXPY

per step. For these and other properties of QMR, we refer the reader to [19, 41].

Algorithm 3.1 is only one possible implementation of the QMR. method. Instead of using three-

term recurrences as in the underlying look-ahead Lanczos Algorithm 2.1, the basis vectors {v_) and

{w,} can also be generated by coupled two-term recurrences. Empirical observations indicate that,
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in finite precision arithmetic, the latter approach is more robust than the former. Details of such

an implementation of the QMR method based on coupled two-term recurrences with look-ahead

are presented in [20].

FORTRAN 77 implementations of the QMR. Algorithm 3.1 and of the look-ahead Lanczos

Algorithm 2.1 are available electronically from netlib. 1

3.2 BCG and an Implementation of QMR without Look-Ahead

We now look at BCG in more detail. The BCG algorithm attempts to generate iterates z_ ca that

are characterized by the Galerldn condition

BCG
x_ E xo + Kn(ro, A) and wT(b- Az_ cG) = O forall w e g_(w 1,AT). (3.8)

Unfortunately, such iterates need not exist for every n, and this is one source of possible breakdowns

in BCG.

As noted already, BCG is closely related to the classical Lanczos process. More precisely, the

BCG residual vectors are just scalar multiples of the right Lanczos vectors:

r n b - BCG= -/iz_ =0nv,+ 1, 0n EC, 0_ _0. (3.9)

In addition to r,, the BCG algorithm also involves a second sequence of vectors F, E K,+I(Fo, AT).

Here F0 E C N is an arbitrary nonzero starting vector; usually one sets fo = r0 or chooses Fo as a

vector with random coefficients. The vectors f, are connected with the left vectors generated by

the classical Lanczos process:

From (3.9) and (3.10), we have

 .EC, (3.10)

-r 0, _Io,,xw%..rn_lrn_ 1 -- (3.11)

l_ecM1 from (2.7) that the classical Lanczos process breaks down if w_v, = 0 with v, _ 0 and

w,_ _ 0. In view of (3.11), this is equivalent to

-r =0, #0, - #0. (3.12)rn-lrn_l rn-1 rn_l

As Algorithm 3.2 below shows, BCG also breaks down if (3.12) occurs. In addition to (3.12), there

is a second source of breakdowns in BCG, namely

gtT_lAq__l = O, q_-I _ O, [l_-x # O. (3.13)

Here qn-1 and an-1 are the vectors generated by Algorithm 3.2 below. It can be shown (see,

e.g., [46]) that a breakdown of the kind (3.13) occurs if, and only if, no Galerkin iterate z_sCc with

(3.8) exists.

Unlike the BCG iterates, the QMR iterates are always well defined by (2.6). In particular,

breakdowns of the kind (3.13) can be excluded in the QMR Algorithm 3.1. We stress that this

*To obtain the codes, one needs to send a message consisting of the single line "send lalqmr from mist" to

netlib@ornl.oov.
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remains true even if, in the QMR Algorithm 3.1, one uses the classical Lanczos process in step 1).

Of course, the use of the look-ahead Lanczos Algorithm 2.1 avoids breakdowns of the first kind

(3.12), except for incurable breakdowns.
As already noted, existing BCG iterates can be easily obtained from quantities generated by

the QMR. Algorithm 2.1. Therefore, QMtt can also be viewed as a stable implementation of BCG.

It is also possible to reverse the roles of the two algorithms and to get QMR iterates directly from

the BCG algorithm. Such an implementation of QMR without look-ahead was derived by Freund

and Szeto in [21], and is as follows.

Algorithm 3.2 (QMtt without look-ahead from BCG)

O) Choose z o E C N and set z0QMR = z BCG = z 0.

Set q0 = r0 = b- Az0, P0 = 0, r0 = wll]r0[I, 00 = 0.

Choose ro E C N, ro 7t O, and set qo = to, Po = r0Tr0 •

For n = 1,2,..., do :

1) Set a,__ x = 4T_IAq,_I.

If a,,_ 1 = O, stop. Otherwise, compute

Otn_ 1 = Pn_l/(Tn_l,

r_ = rn_ 1 -- ¢_._lAq._l,

fa = fn-1 - an-lATqa-1 •

If BCG iterates are desired, set

zBCG = zBCGn n-I + an-lq--l"

2) Compute
  llr.II 1

7",_1 V/'_n '

Cn I_nPn_ 1 _- C20_n_lqn_l ,Pn -- 2 2 "

QMR X QMR Jr ]_nn -- n--1 "

3) If p,__, = O, stop. Otherwise, compute

p. = fTr., _,_= p./p._,,

q. = r. + $.q.-1,

r. = r._l_.C_,

We remark that, exact for the additional update in step 2), this algorithm is just the classical

BCG. Of course, unlike the QMR. Algorithm 3.1, the implementation of QMR. in Algorithm 3.2 can

breakdown due to (3.12) and (3.13).

Algorithm 3.2 is only one of several possible implementations of the BCG approach; see [34, 28]
for an overview of the different BCG variants. As in the nonsymmetric Lanczos process, exact

and near-breakdowns in the BCG methods can be avoided by incorporating look-ahead procedures.

Such look-ahead BCG algorithms have been proposed by Joubert [34] and Gutknecht [29].
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4 Transpose-Free Methods

Krylov subspace methods such as BCG and QMR, which are based directly on the Lanczos process,

involve matrix-vector products with A and A T. This is a disadvantage for certain applications,

where A T is not readily available. It is possible to devise Lanczos-based Krylov subspace methods

that do not involve the transpose of A. In this section, we give an overview of such transpose-free

schemes.

First, we consider the QMR algorithm. As pointed out by Freund and Zha [23], in principle

it is always possible to eliminate A T altogether, by choosing the starting vector w 1 suitably. This

observation is based on the fact that any square matrix is similar to its transpose• In particular,

there always exists a nonsingular matrix P such that

AT p = PA. (4.1)

Now suppose that in the QMR Algorithm 3.1 we choosethe special starting vector w1 = Pv I . Then,

with (4.1), one readily verifies that the vectors generated by look-ahead Lanczos Algorithm 2.1

satisfy

w,_ = Pv,_ for all n. (4.2)

Hence, instead of updating the left Lanczos vectors {w_} by means of the recursions in (2.3) or (2.4),

they can be computed directly from (4.2). The resulting QMlZ algorithm no longer involves the

transpose of A; in exchange, it requires one matrix-vector multiplication with P in each iteration

step. Therefore, this approach is only viable for special classes of matrices A, for which one can

find a matrix P satisfying (4.1) easily, and for which, at the same time, matrix-vector products

with P can be computed cheaply. The most trivial case are real or complex symmetric matrices

A = A T, which fulfill (4.1) with P = 1. Another simple case are Toeplitz matrices A, i.e., matrices

whose entries are constant along each diagonal. Toeplitz matrices satisfy (4.1) with P = J, where

J __ [i°i]• °° 1

° •

oo.

is the N x N antidiagonal identity matrix. Finally, the condition (4.1) is also fulfilled for matrices
of the form

A = TM -1, P = M -1,

where T and M are real symmetric matrices and M is nonsingular. Matrices of this type arise when

real symmetric linear systems Tz = b are preconditioned by M. The resulting QMlZ algorithm for

the solution of preconditioned symmetric linear system has the same work and storage requirements

as preconditioned SYMMLQ or MINP_ES [42]. However, the QMR approach is more general, in

that it can be combined with any nonsingular symmetric preconditioner M, while SYMMLQ and

MINRES require M to be positive definite (see, e.g., [24]). For strongly indefinite matrices T, the

use of indefinite preconditioners M typically leads to considerably faster convergence; see [23] for

numerical examples.

Next, we turn to transpose-free variants of the BCG method. Sonneveld [50] with his CGS

algorithm was the first to devise a transpose-free BCG-type scheme. Note that, in the BCG
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Algorithm 3.2, the matrix A T appears merely in the update formulas for the vectors rn and {,.

On the other hand, these vectors are then used only for the computation of the vector products

p'* = _nrr'* and a,, - (trAq'*. Sonneveld observed that, by rewriting these products, the transpose
can be eliminated from the formulas, while at the same time one obtains iterates

x2". E Zo + ]C2n(ro,A), n = 1,2,..., (4.3)

that are contained in a Krylov subspace of twice the dimension, as compared to BCG. First, we

consider p_. From Algorithm 3.2 it is obvious that

r n -- Cn(A)r0 and _, = _bn(Ar)_o, (4.4)

where _,_ is the nth residual polynomials of the BCG process. With (4.4), one obtains the identity

Pn = r0T (¢'*(A)) 2 r0, (4.5)

which shows that p,, can be computed without using A T. Similarly,

an = ¢Pn(A)ro and qn = _,_(AT)ro,

for some polynomial _,, E 7_,, and hence

an = fToA (¢2"*(A ) )2 ro • (4.6)

By rewriting the vector recursions in Algorithm 3.2 in terms of _b'*and _'* and by squaring the

resulting polynomial relations, Sonneveld showed that the vectors in (4.5) and (4.6) can be up-

dated by means of short recursions. Furthermore, the actual iterates (4.3) generated by CGS are

characterized by

rCGS ( ))22,, = b- Az2"* = ¢_CC(A ro. (4.7)

Hence the CGS residual polynomials !b2cnGs (¢BCG) 2= are just the squared BCG polynomials. As

pointed out earlier, BCG typically exhibits a rather erratic convergence behavior. As is clear from

(4.7), these effects are magnified in CGS, and CGS typically accelerates convergence as well as

divergence of BCG. Moreover, there axe cases for which CGS diverges, while BCG still converges.
For this reason, more smoothly converging variants of CGS have been sought. Van der Vorst [53]

was the first to propose such a method. His Bi-CGSTAB again produces iterates of the form (4.3),

but instead of squaring the BCG polynomials as in (4.7), the residual vector is now of the form

r2n = o_CG(A)x'*(A)ro .

Here X'* E 7an, with X'*(O) = 1, is a polynomial that is updated from step to step by adding a new
linear factor:

X'*(A) - (I - rI'*A)X'*_:(A). (4.8)

The free parameter rl". in (4.8) is determined by a local steepest descent step, i.e., r/'* is the optimal
solution of

min II(I - rlA)x'*-:(A)_CC(A)roI[ •
neC
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Due to the steepestdescentsteps,Bi-CGSTAB typicallyhas much smoother convergencebehavior

than BCG or CGS. However, thenorms ofthe Bi-CGSTAB residualsmay stilloscillateconsiderably

for difficultproblems. Finally,Gutknecht [30]has noted that,for realA, the polynomialsXn will

always have realroots only,even ifA has complex eigenvalues.He proposed a variantof Bi-

CGSTAB with polynomials (4.8)thatare updated by quadraticfactorsin each stepand thus can

have complex rootsingeneral.

In the CGS algorithm,the iterates(4.3)are updated by means ofa formula ofthe form

:CGS _CGS
2n - "_2(,-I) + an-1(Y2--1 + Y2,)" (4.9)

Here the vectors Yl, Y2,. -., Y2n satisfy

span{_,,y2,...,y,,) =/C,,(_o,A), m = 1,2,...,2n.

In other words, in each iteration of the CGS algorithm two search directions Y_,,-1 and Y2, are

available, while the actual iterate is updated by the one-dimensional step (4.9) only. Based on

this observation, Freund [14] has proposed a variant of CGS that makes use of all available search

directions. More precisely, instead of one iterate zCnGs per step it produces two iterates z2__ 1 and

z2n of the form

zm=Xo'F[Yl Y2 ... y,n]z,_, zm EC m. (4.10)

Furthermore, the free parameter vector zm in (4.10) can be chosen such that the iterates satisfy

a quasi-minimal residual condition, similar to the quasi-minimization property of the QMR Al-

gorithm 3.4. For this reason, the resulting scheme is called transpose-free quasi-minimal residual

algorithm (TFQMR.). For details, we refer the reader to [14], where the following implementation

of TFQMR is derived.

Algorithm 4.1 (TFQMR algorithm)

O) Choose z o e C N.

Set w 1 = yl = ro = b- Azo, vo = Ayl, do = O.

set_o= l[_011,0o= 0,7o= 0.

Choose ro E C N, ro _ O, and set P0 = r0Tr0 •

For n = 1,2,..., do :

1) Compute

2) For m = 2n- l, 2n do:

Compute

(Tn_ I -" '_OTVn_I,

O_n_ 1 = pn_l/O'n_l,

Y2n : Y2n- 1 -- Otn- 1 vn- 1 •

Wm,+l = W m -- otn_lAYm,

¢,, = IIw,,,+,ll/_',,.-,,_,,.= 1/_,
r., = r,,,_l _.,c,., n., = c_a.-1,

2d., = y_,+ (a.,_lrl.,_ale.__)d.,__,

Zrn -- Zm_ 1 + _Trndm.
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If _'m

3) Compute

has converged, stop.

/9 n _ _0T102n+l,

= p./p.-1,

Y2n+l "- _D2n+l "lt" _nY2n,

vn = Ay2n+l + fln(AY2n + #nvn-1).

We would like to point out that the iterates generated by the QMP, Algorithm 3.1 and the

TFQMR. Algorithm 4.1 are different in general.

Another transpose-free QMR method was proposed by Chan, de Pillis, and Van der Vorst [5].

Their scheme is mathematically equivalent to the QMR Algorithm 3.1, when the latter is based on

the classical Lanczos process without look-ahead. The method first uses a transpose-free squared

version of the Lanczos algorithm (see, e.g., Gutknecht [28]) to generate the scalar tridiagonal

Lanczos matrix H,,. The right Lanczos vectors v,, are then computed by running the standard

Lanczos recurrence, and finally the QMR iterates are obtained as in Algorithm 3.1. Freund and

Szeto [21] have derived yet another transpose-free QMR scheme, which is modeled after CGS and

is based on squaring the residual polynomials of the standard QMR Algorithm 3.1. However, the

algorithm given in [5] and the squared QMR approach both require three matrix-vector products
with A at each iteration, and hence they are more expensive than CGS, Bi-CGSTAB, or TFQMR,

which involve only two such products per step.

Finally, we remark that none of the transpose-free methods considered in this section, except for

Freund and Zha's simplified QMR algorithm based on (4.1), addresses the problem of breakdowns.

Indeed, in exact arithmetic, all these schemes break down every time a breakdown occurs in the

BCG Algorithm 3.2. Practical look-ahead techniques for avoiding exact and near-breakdowns in

these transpose-free methods still have to be developed.

5 Concluding Remarks

In this paper, we have covered only some of the recent advances in iterative methods for non-

Hermitian linear systems. A more extensive survey of recent developments in this field can be

found in [17].
The introduction of CGS in the 1980s spurred renewed interest in the nonsymmetric Lanczos

aigorithm, with most of the effort directed towards obtaining a method with better convergence

properties than BCG or CGS. Several BCG-based algorithms were proposed, such as Bi-CGSTAB,

introduced by Van der Vorst [53]. The quasi-minimal residual technique was introduced by Fre-

und [13, 15] in the context of complex symmetric systems, then later coupled with a new variant of

the look-ahead Lanczos approach to obtain a general non-Hermitian QMt_ algorithm [19]. Finally,

several transpose-free algorithms based on QMR have been introduced recently, which trade the

multiplication by A T for one or more multiplications by A. However, their convergence properties

are not well understood, and none of these algorithms have been combined with look-ahead tech-

niques yet. In general, it seems that the transpose-free methods have more numerical problems than

the corresponding methods that use A T , and more research is needed into studying their behavior.

Finally, even though the field of iterative methods has made great progress in the last few years,

it is still in its infancy, especially with regard to the packaged software available. Whereas there are
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well-established robust general-purpose solvers based on direct methods, the same cannot be said

about solvers based on iterative methods. There are no established iterative packages of the same

robustness and wide acceptance as, for example, the LINPACK library, and as a result many of the

scientists who use iterative methods write their own specialized solvers. We feel that this situation

needs to change, and we would like to encourage researchers to provide code for their methods.
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